

WHAT IS CLAIMED IS:

	Sander .
1	1. An implantable port comprising:
2	a body having a flow passage therethrough, said flow passage having an
3	upstream end and a downstream end, wherein at least a portion of the upstream end is
4	adapted to sealingly engage an access tube which is inserted into said upstream end; and
5	a pressure responsive valve element positioned in the flow passage
6	downstream from the upstream portion so that an access tube can be fully inserted into
7	said upstream portion without engaging the valve component, wherein the valve
8	component is closed in the absence of a differential pressure above a threshold level.
1	2. An implantable port as in claim 1, wherein said body comprises a
2	housing and a housing insert coupled to said housing.
1	3. An implantable port as in claim 2 wherein said insert comprises a
2	compliant material defining a portion of the flow passage.
1	An implantable port as in claim 2 wherein said insert comprises a
O	nipple element containing said pressure-responsive valve.
1	(5. An implantable port as in claim 2 wherein said portion of the
2	upstream end of the housing adapted to sealingly engage the access tube has a radial
3	stiffness greater than a radial stiffness of said access tube.
1	6. An implantable port as in claim 2 wherein said housing comprises
2	6. An implantable port as in claim 2 wherein said housing comprises stainless steel.
۷	Statilless steel.
1	7. An implantable port as in claim 2 wherein the housing defines a
2	first portion of the passage and the insert defines a second portion of the passage.
1	An implantable port as in claim 7 wherein the first portion of the
2	passage has a distal opening with a diameter smaller than a diameter of the access tube.
1	An implantable port as in claim 2 wherein the housing defines a
2	first portion of the passage and a catheter coupled to the port defines a second portion of
3	the passage.

15

		1	10. An implantable port as in claim 1, wherein the downstream end of
	J.C	2	the flow passage is disclosed at about a 90° angle relative to the upstream end which
		3	receives the access tube.
H		27	An implantable port as in claim 1 wherein the passage does not
	•	2	have a needle guide changel coupled to the body and upstream of the upstream end of the
٠.	•.	3	passage.
		1	12. An implantable port as in claim 1, wherein said valve element
		2	comprises a pressure-responsive slit valve.
		1	13. An implantable port as in claim 1, wherein said valve element
	Ö	\mathbf{p}^2	comprises an articulating, pressure responsive leaflet valve.
	Ĭ	Qu Cd (An implantable port as in claim 1 wherein the flow passage further
	Ŭ	2	comprises a catheter coupled to said body wherein said catheter has a lumen fluidly
	CATALITY TO THE	3	coupled to said passage in the body.
		1 2 3	An implantable port as in claim 14 wherein the catheter defines the downstream end of the flow passage and the valve element is located at a distal tip of the catheter.
H		1 2	16. An implantable port as in claim 1, wherein the threshold valve of the differential pressure is between about 0.25 and 25.0 psi.
	du de	ار ا ا ا ا	77. A method for delivering a substance to a subcutaneous target site, said method comprising:
		3	percuraneously introducing an access tube to an implanted port having a
		4	flow passageway with an upstream end, a downstream end, and a valve element in the
		5	flow passageway, wherein the access tube is introduced to seat in the passage but does not
		6	engage the valve element; and
		7	introducing said substance into the flow passage through the access tube at
		8	a pressure sufficient to open the valve element to permit flow through the flow
		9	passageway to the target site.

MA	72	the implanted port with said access tube through the same access tract at intervals and
	3	over a time period sufficient to cause scar tissue formation over the access tract.
	1	19. A method as in claim 17 further comprising locating said implanted
	2	port by manually aligning the access tube with a line from the skin entry point of an
	3	access tract to the aperture on the port.
	1	20. A method as in claim 17 further comprising locating the port by
	2	annually feeling the port to determine the position of the aperture.
	1	21. A method as in claim 17, wherein the access tube is introduced
Ö	2	through a skin layer having a thickness in the range from 3 mm to 20 mm.
Ú	1	22. A method as in claim 17, wherein the access tube comprises a blunt
	2	cannula.
TI.	1	23. A method as in claim 17, wherein the introducing step comprises
) _{]2}	orienting the access tube generally vertically with respect to the skin surface.
	1	24. A kit comprising:
Ö	2	a subcutaneously implantable port according to claim 1;
Q	3	instructions for mplanting the port comprising implanting a port in a
	4	subcutaneous tissue pocket, wherein an access cannula-receiving aperture of the port is
	5	disposed beneath an intact region of skin, and introducing a penetrating element through
	6	the intact region of skin into the aperture, wherein the element remains anchored in the
	7	aperture for a time sufficient to create an access tract; and
J	8 	a package adapted to contain the port and the instructions for use.
2	1	25 A kit as in claim 18, further comprising a penetrating element

A method as in claim 17 further comprising repeatedly accessing

add as>

26.

syringe needle.

1 2 A kit as in claim 19, wherein the penetrating element comprises a